MAZ2101 Linear Algebra II

Fields & Vector Spaces

e Def 1.3 [Field, ring, group]:
Closure, identity, associativity, invertibility, commutativity
for + and x (invertibility for x excludes 0), distributivity
of X over +
Fields satisfy all axioms; (commutative) rings satisfy all
except x invertibility; (additive) groups do not have x and
may not satisfy + commutativity

e Def 1.12 [Vector space]: Satisfies closure, identity,
associativity, invertibility, distributivity, commutativity

¢ Ex 1.18 [Matrix space]: M, (F), M, xn(F) — m rows

Vector Subspaces

e Def 2.1 [Subspace]: Set closed under vec. + and scalar x
e Rem 2.3: Subspace must have Oy (= Oy)

e Thm 2.8 [Equiv. subspace def.]: W is subspace of V'
<= W is closed under linear combination
<= W with + and X of V' becomes a vector space

e Ex 2.9: Null space of matrix A is a subspace, i.e. solutions
to homogeneous linear equations form a subspace

e Thm 2.15: The intersection of (possibly infinite number

of ) subspaces is a subspace: [, .; Wa is a subspace

e LA1 Ex 3.1.8.3 [2D & 3D geometry]:
Line in R?: {(z,y) | ax + by = ¢}
Plane in R3: {(x,y,2) | ax + by + cz = d}
alternatively: (1) {(%, s,t)|s,teR}ifa##0
(2) {(s, == t) | s,t e R} if b#0
(3) {(s,t,4=2=bt) | st e R} if ¢ £ 0
Line in R3: {(ag, bo,co) + t(a,b,c) | t € R}

Sums of Subspaces

e Ex 3.3: SCT = Span(S) C Span(T)

e Thm 3.4: S is subset of V, then Span(S) is subspace of V,
and it is the smallest subspace containing S

e Tut 2.5: For subsets U;, W;, U, and subspace W:
(1) Ui CUyand Wy CWy = Ui+ W, C Uy +Woy
(2) W+{0} =W, W+W=W
BU+W=W = UCW

e Thm 3.11: For subspaces U W C V:
(1) U+ W = Span(U UW)
(2) U+ W is a subspace of V
(3) U + W is the smallest subspace containing both U, W

e Thm 3.18: (induction of Thm 3.11) For subspaces U; C V:
(1) 3, Wi = Span(U, W)
(2) >, W; is a subspace of V
(3) >, W; is the smallest subspace containing all W;

e Ex 3.15: For subspaces U/ W C V:
UUW issubspace «<—= UCWor W CU

e Ex 3.16: Span(S UT) = Span(S) + Span(T)

e Def 3.20 [Direct sum of subspaces]:
W=W1eW, <= W=W;+W; and W1NnW, = {0}

e Thm 3.25 [Equiv. direct sum def.]: W, are subspaces
of V, W =W7 + Wa:
Wi + Ws is a direct sum <= Yw € W, w = wy + ws
where wy € Wy, wy € Wy and the wy, wy are unique

e Def 3.26 [Direct sum of many subspaces]:
W=PW: < W=> W, and

vk, (3:1 WZ-) NW = {0}

i=1

e Thm 3.31 [Equiv. direct sum definition)]:
S
If W, are subspaces of vector space V, W = Z W; then:

s =1
Z W; is a direct sum of W;

i=1

VLY Wi | nw = {0}
£l
<= all w; are unique in w = Zwl (where w; € W;)
i=1

Linear Independence

e Def 4.1 [Linear independence]: S = {v;} is a linearly
independent set <= (>, z;v; =0 = all 2; =0)

e Thm 4.8 [Equiv. linear independence def.]:
(1) S = {v;} is linearly independent
<= no vg € S is a linear combination of others
(2) S = {v1} is linearly independent <= wv; #0
(3) S = {v1,v2} is linearly independent
<= neither of vy, v is a scalar multiple of the other

Basis & Dimension

e Def 4.10 [Basis]: B C V is a basis
<= V = Span(B) and B is a linearly independent set
= dimp V := |B| (for finite cardinality of B)

e Thm 4.11 [Equiv. basis def. I]: B = v; is a basis of V'
< WYweV,v=> av; uniquely
— V =@, Span{v;}

e Thm 4.13 [Basis from spanning set]: V' = Span(B)
— dB; C B such that B; is a basis of V, and
any maximal linear independent set By C B is a basis of V

e Thm 4.15 [Dimension is well-defined]:
If B is a basis of V' then:
(1) |S| > |B| = & is linearly dependent
(2) IT) < |B] = T does not span V
(3) B’ is another basis of V. = |B’| = |B| (= dimp V)

e Thm 4.16 [Expanding a linearly independent set]:
If B C V is linearly independent then either:
(1) Span(B) =V so B is a basis of V'
(2) w e V\ Span(B) = B U {w} is linearly independent
Thus, dimpV =n = Jw|p|4+1,...,wn, € V \ Span(B)
such that B]] {w|BH_1, - 7wn} is a basis of V/

e Thm 4.18 [Equiv. basis def. II]: B = v; is a basis of V
<= B is linearly independent and |B| = dimp V'
<= Span(B) =V and |B| = dimp V

e Thm 4.19 [Basis and direct sum]:
(1) B=1],; B; is a basis of V
<= B is a basis of W; = Span(B;) and V =, W;
(2) V= @z W, —= dimpV = Zz dimg W;

e Ex 4.20: If W is a subspace of (finite-dimensional) V' then:
V=W +— dimV =dimW

Matrix Manipulation

¢ LA1 Thm 2.2.22 [Transposition]:
For any A, B € M,,(F) and ¢ € F:
(1) (A=A
(2) (A+B)! = A"+ B!
(3) (cA)t = cAt
(4) (AB)t = BtA?

(where A & B are the same size)

(where width of A = height of B)

e LAl Thm 2.2.22 [Inverse of square matrices]:
For any invertible A, B € M,,(F) and ¢ € F:
(1) cA is invertible and (cA)~! = 141
(2) A! is invertible and (A%)~! = (A71)!
(3) A=! is invertible and (A=1)"1 = A
(4) AB is invertible and (AB)~! = B~1A~!

Determinants & Invertibility

of a square matrix

LA1 Thm 2.5.6 [Cofactor expansions]: A € M, (F)
det(A) = Zj aij(—l)”j det(Mij), 1 S Vi S n
= Zz (Lij(—l)i+j det(Mij), 1 < V] <n
where M;; is the (¢,j)-minor of A
Note: (—1)¥7 det(M;;) is the (i,j)-cofactor of A
¢ LA1 Thm 2.5.8 [Triangular matrix]: The determinant
of a triangular matrix is the product of its diagonal entries

e LA1 Thm 2.5.10 [Transposition]: det (A) = det (A")

e LA1 Thm 2.5.19 [Invertibility]:
A is invertible <= det(A4) #0

¢ LA1 Thm 2.4.12 [Equiv. invertibility def.]:
For any square matrix A, B € M,,(F), if AB = I then:
(1) A and B are both invertible

(2) A7'=B
(3) Bl=A
(4) BA=1

e LAl Thm 2.5.22: If A, B € M, (F) and ¢ € F then:
(1) det(cA) = c™ det(A)
(2) det(AB) = det(A) det(B)
1
(3) det(A™1) = Jot(A) if A is invertible
e LAl Thm 6.1.8 [Main theorem on invertible
matrices]: For any square matrix A € My, x,(F):
A is invertible
— (AX=0 = X=0)
< rref(A) =1
— A= H E; where all F; are elementary matrices
< det(A) #0
<= the rows of A form a basis for R"
<= the columns of A form a basis for R"
<= rank(4) =n
<= 0 is not an eigenvalue of A

e Thm 5.3 [Linear independence & determinant]:
For any square matrix A € M, x,(F):
A is a invertible
<= det(A) £ 0
<= The column vectors of A form a basis of F'
<= The row vectors of A form a basis of F"
<=> The column vectors of A are linearly independent in F,
<=> The row vectors of A are linearly independent in F
<= (AX =0 = X =0), i.e. only has trivial solution

Row Spaces & Column Spaces

e Def 5.1 [Basic definitions]:
Column space: Col(A) is the span of column vectors in
matrix A
Row space: Row(A) is the span of row vectors in matrix A
Range: R(A) = {AX | X € F"'}
Null space (kernel): Null(A),Ker(A) :={X € F' | AX =0}
Nullity: nullity(A) := dim Null(A4)
Rank: defined in Thm 5.2

e Thm 5.2 [Rank-dimension theorem)]:
(1) R(A) = Col(A)
(2) dim Col(A) = dimRow(A4) (=:rank(A))
(3) rank(A) + nullity (A) = number of columns in A

e Ex 5.4: For any A € M,,xn(F):
rank(A) = Largest order of a minor of A that is invertible
(Note: A minor of A of order k is any matrix formed by
removing m — k rows and n — k columns (so we are left with
a k x k square matriz))

Row Equivalence

e Def 5.5 [Elementary row operations]:
Three types of elem. row ops. (representable by matrix):
(1) Switch row ¢ with row j
(reflection, B = FA = det(B) = —det(A))
(2) Add a scalar multiple of row ¢ to row j
(shearing, B = FA = det(B) = det(A))
(3) Multiply a nonzero scalar k to row ¢
(scaling, B=FEA = det(B) = kdet(A))

If B= FE,--- E1A for some elementary row operations Fj;,
then matrices A and B are row equivalent

e Thm 5.6 [Properties of row equivalent matrices]:
If A= (a1, -+ ,a,) and B = (b1, -+ ,b,) are row equivalent
(with a; and b; being column vectors), then:
(1) For any indices 41,...,is and ji,...,jt,
C1a4, + -+ csa;, = dlajl + -+ dtajt
<~ Clbil +--F Csbis = dlbjl + -4 dtbj,«,
(2) For any indices i1, . .
{ai,,...,a; }is a linearly independent set
< {b;,,...,b;_}is alinearly independent set
(3) For any indices i1, ...,1s,
{aiy,-..,a;,}form a basis for Col(A)
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<= {b;,,...,b;,} form a basis for Col(B)
(4) If B is in row-echelon form with leading entries at
columns i1, ...,is then
= {b;,,...,b; } form a basis for Col(B)
= {a;,,...,a; } form a basis for Col(A4) (by (3))

(5) Row(A4) = Row(B)

(6) If B is in row-echelon form with leading entries at rows
1,...,t then

Rows 1,...,t of B form a basis for Row(B) = Row(A)

¢ Ex 5.8 [Finding subset of vectors that form a basis]:
Given some column vectors vy, ..., v,, to find a subset that
forms a basis for Span{vy,...,v,}:
Find A = rref(vy,...,v,), and the column vectors
corresponding to leading entries in A will form the basis

¢ Ex 5.9 [Finding simpler basis for a set of vectors]:
Given some row vectors vy, ..., vy, to simpler basis for

Span{vy, ..., v}
U1

Find A = rref , and the nonzero row vectors in A will
Un

form the basis

e Tut 4.4 [Finding rank and nullity of a matrix]:
With rref(A), we can determine rank(A) from the number
of leading ‘1’s
Null(A) = Null(rref(A)) may be determined like this:

1 0 -4 -28 =37 13
R— o1 -2 —-12 —-16 5
10 0 O 0 0 0
0 0 O 0 0 0

dxs + 28x4 + 3725 — 1326

2$3+121’4+16$5-5.’E6

Null(R) ={ X = s z; €R

T4
Ts
Zg

e Tut 3.3 [Checking polynomials for linear
independence]: To check if polynomials
uy(x),us(x), usz(x) are linearly independent, we need to
form the equation auy(z) + bug(x) + cuz(x) =0
(identically) and group coefficients of the same type of term
together, then solve the simultaneous equations that result

In general, we need to find a basis for the vector space

Quotient Spaces

e Def 6.3 [Coset]: v=v+W ={v+w|weW}

Ex 6.4 [Equiv. coset relations]:
v+ W =W (ie. v=0)

—veW

—v+WCW

=S W+ W

e Thm 6.5 [To be in the same coset]:
V=T < v1— €W <<= v-vi €W

e Tut 1.4c [Equivalence classes are disjoint]:
FOI' any vi, v S V, either ﬁm@: < or 1}71:1]*2

e Tut 1.4d [Cardinality]: For any vi,vs € V, [v7| = |73

¢ Def 6.8 [Quotient space]: If W is a subspace of V then:
V/W ={v=v+ W |v €V}, and operations on elements:
(+) 11+ 702 =01 + 02
(x) avy = avy (a € F)

e Def 6.9 [Quotient space is well-defined]:
(1) The operations + and x in Def 6.8 are well-defined
(2) V/W with 4+ and X in Def 6.8 becomes a vector space
over F, with Oy /yy =0y =@ (Yw € W)

¢ Rem 6.13 [Direct sum & quotient space]:
If V.=U & W, then this map is an isomorphism:
U—-V/W
u—u=u+W

e Ex 6.26 [Quotient map]:
If W is a subspace of V, then this map is a surjective linear
transformation called the quotient map:
vV =>V/W
v =v+ W
In addition, Ker(y) = W

Linear Transformations

e Def 6.10a [Linear transformation):
 is a linear transformation from V; to Vo <=
@(vr + v2) = (0n) + p(v2) and plavy) = ap(vy), Yo; € V
A linear transformation from V to itself is a linear operator

e Def 6.10b [Basic definitions]: ¢: V — W
Domain: dom(p) =V
Codomain: codomain(p) = W
Kernel: Ker(p) ={v eV | ¢(v) =0w}
Range (image): R(p),Im(¢) = {p(v) |[v eV} CW

e Def 6.10c [Isomorphism]:
An isomorphism is a bijective linear transformation

¢ Ex 6.11 [Linear transformation T4 associated with a
matrix A]: Tx: F' — F™: X — AX, then
T4 is a linear transformation
Ker(T4) =Ker(A) =Null(4) ={X € F | AX =0} C F
R(Th) = Ta(F7) = R(A) = {AX | X € Fr} € FP"

o Tut 4.5: Ty: F* — F: X s AX
(1) T is injective <= nullity(A) =0 (i.e. Null(A) = {0})
(2) T4 is surjective <= rank(A) =m
(3) T4 is bijective (and hence an isomorphism) <= A is
an invertible square matrix (i.e. m =n and A~! exists)

e Rem 6.12: For any linear transformation 7: V. — W,
T(0y) = 0w

e Thm 6.22 [Equiv. linear transformation def.]:
 is a linear transformation
< plarvr + a2v2) = a19(v1) + azp(v2)

In particular: ¢(Span(B)) = Span(p(B))

Va; € F,v; €V

e Ex 6.23: If {u;} is a basis, {T'(u;)} uniquely determines T

¢ Ex 6.24 [Composition]: psp; = ¢q 0 1 is also a linear
transformation

e Thm 6.27 [Image is a subspace]: If V] is a subspace (of
V) then T (V1) = {T'(v) | v € V1 } is a subspace (of W)

e Thm 6.28 [Kernel is a subspace]:
(1) If  is a linear transformation then Ker(yp) is a subspace
(2) If W is a subspace then there exists a linear
transformation ¢: V' — U such that Ker(p) =W

¢ Ex 6.29 [Inverse of a subspace is also a subspace]:
If W, is a subspace (of W) then
T=Y (W) ={v eV |T(v) € Wi} is a subspace (of V)

e Ex 6.30 [Injectivity]: ¢ is injective <= Ker(y) = {0}

¢ Ex 6.31a [Linear combinations]:
For any linear transformations ¢, and s,
these are all also linear tranformations:
(1) o1+ 21 v 1(v) + p2(v)
(2) arp1: v = a1 (v)
(3) ar1p1 + aapa: v arp1(v) + aapa(v)

e Ex 6.31b: The set of all linear transformations
Homp(V,W) :={p: V — W | ¢ is a linear transformation}
is a vector space over F'

¢ Ex 6.32 [Powers of a linear operator]:
n

Given any polynomial f(x) = Z a;z" and a linear operator

=0
n

T, f(T) = Z a;T" is also a linear operator
i=0

e Ex 6.33 [Endp(V) is a ring]: The set of all linear
operators Endp (V) := Homp(V, V) with the natural + and
S x T :=SoT is a (non-commutative) ring with 0gyq, (v)
being the zero map and 1g,,4,.(v) being the identity map Iy

Isomorphisms

e Ex 6.34: F, = F"

; Ex 6.35: My yn(F) 2 7
e Thm 6.37 [Isomorphism from kernel and image]:
For any linear transformation ¢: V. — W:
(1) v is injective <= Ker(p) = {0y}
(2) v is surjective <= Im(p) =W
(3) @ is isomorphism <= Ker(p) = {0y} and Im(p) = W

e Thm 6.38 [15* isomorphism theorem]:
For any linear transformation ¢: V — U,
there exists an isomorphism

% V/Ker(g) S Im(p) C U
v o(v)
such that ¢ =@ oy where v: V — V/Ker(¢): v — 7

In particular:
¢ is surjective <= %: V/Ker(¢) = U is an isomorphism

e Thm 6.39 [Basis of a quotient space]:
For any vector space V' with finite dimension n, and
subspace W C V with a basis By = {v1,...v,.}:

(1) By Thm 4.16, Jv,41, . . . v, such that
Bw [T{vr+1,-.-,v,} is a basis of V
(2) {Trq1,-- -, Un} ={vpp1+ W,...,v, + W} is a basis of

V/W (. dimp V/W = dimp V — dimp W)
(3) Bw [I{tr+1,--.,un} is a basis of V
<~ {U;11,...,Un} is a basis of V/W

e Rem 6.40: Even if dimV = oo, it is still true that
dimpV = dimp W + dimp V/W

e Ex 6.41 [Properties of isomorphisms]:
For any (possibly infinite-dimensional) isomorphism
@: V — W and subset B C V:

(1) iaivi = i ajv; == i%sﬁ(vi):
i=1 i=r+1 i=1

for any v; € V (i.e. o(v;) € W)
) B is linearly independent <= ¢(B) is linearly indep.
) ¢(Span(B)) = Span(p(B))
)
)

S

> aip(vi)

i=r+1

B spans V <= ¢(B) spans W
B is a basis of V. <= ¢(B) is a basis of W
) dimV = dim W

Note: (4) and (5) are true for any linear transformation

(2
(3
(4
(5
(6

e Ex 6.42 [Same-dimensional spaces are isomorphic]:
For any finite-dimensional vector spaces V and W over F:
dimF V= dlmF w
<= there exists an isomorphism ¢: V 5 W (ie. VW)
< for some n, VX F" =W

e Thm 6.43 [Dimension theorem]:
For any linear transformation ¢: V' — W between (possibly
infinite-dimensional) vector spaces over F':
dimp Ker(¢) + dimp Im(p) = dimp (V)

e Thm 6.44 [2"9d isomorphism theorem]:
For any subspaces W1, W5 of V|
this map ¢ is a well-defined isomorphism
@ Wl/(Wl n WQ) :> (Wl + WQ)/WQ
w+ (WiNWs) =1 w:=w+ Ws
Thus, dim W; + dim Wy = dim(W; + W) + dim(W; N Wa)

e Thm 6.45 [Equiv. isomorphism def. between
same-dimensional spaces]|: For any linear transformation
w: V — W where dimV = dim W < oo (i.e. is finite):

© is an isomorphism
<= ¢ is a surjection (i.e. Ker(p)={0})
<= ¢ is an injection (i.e. Im(yp) = W)

e Tut 6.7: T:V; — Vs is injective = dimV; < dim V5
T: Vi — V5 is surjective = dim V; > dim V,

e * [Equiv. bijectivity def.]:
Forany f: V - W and g: W — V:
gof=idy and fog=1idy = f and g are bijective and
fTl=gand g™t =7

Representation Matrices

of linear transformations

e Ex 7.2: For any T: V — W, matrices C & D, and matrix
of vectors A € M,,wn(V): T(CAD) =C(T(A))D

e Def 7.4a [[v]g]: For a basis B = (vy, ...
C1

vp) and v € V:

€ F? such that v =), ¢;v; (which is unique)
Cn
e Def 7.4b [Recovering v from [v]|g]: v=Bv]g (#2)

e Ex 7.5 [Isomorphism of vectors]:
p: V — Fl:v— [v]g is an isomorphism

e Thm 7.6 [Representation matrix [T]g B ]:
For any T: V — W with B = (v1,...v,) a basis of V and
Bw = (w1, ...w,) a basis of W, there exists uniquely a
matrix [T] p  such that:

[T (V]g,, = T By g (V0EV) (#3)
[Tlp 5y = (Tl - [T (Wa)lp,,)  (#4)
(T (v1)y.. o, T (vn)) = (W1, ..., W) [T]B’BW (#5)

¢ Ex 7.8 [Isomorphism of transformations]:
¢: Homp(V,W) = Mpyxn(F): T — [T]B,BW is an isom.

e Ex 7.9 [Scalar transformations]:

T:v—av <= [Tlg:v—av (Va € F)

e Ex 7.10 [Finding [T]B,Bw]:
Express each T'(v;) as a linear combination of {w;} using
rref, and hence obtain [T' (v;)] 5, , then use (#4)

o Ex 7.13: These are all isomorphisms (4 = [T 5 ):
p: Ker(T) — Null(4): v = [v]
¥: Null(A) = Ker(T): X — By X
§:R(T) — R(Ta): wr [wlg,,
n: R(T4) - R(T): Y — ByY
Consequently, T' is an isomorphism <= A is invertible

e Thm 7.14 [Represent. matrix for composite map]:
[T 0 Tl]Bl,B3 = [TZ]B2,33 [Tl]Bl,Bg

e Ex 7.15 [Represent. matrix for inverse map]|:

[T Y5, .5, = ([T]BV,BW) -

e Ex 7.16 [Represent. matrix for linear combination]:
[alTl + aZTQ]Bv,BW =a [Tl]BV,BW a2 [TQ]BV7BW



Transition Matrices

Def 7.18 [Basic definition]: If B = (vq,...,v,) and
B’ = (v},...,v),) then the transition matrix from B’ to B is
Pppi=P=(lvilg,. .. [vp]p) € My (F)

Thm 7.17 [Equiv. transition matrix def.]: For any

bases B = (v1,...,v,) and B’ = (v],...,v],) of V:
P=([v]lg,....[v,]g) <= B'=BP <= Pv]g =[v]g
Thm 7.20 [Basis change theorem)]:

[T)p = Pp—p [T)g Porsp = (Po—p) ' [T Pop

Def 7.23 [Similar matrices]:
Al ~ Ay < Ay = P 'A,P for some P

Ex 7.24: Similarity ‘~’ is an equivalence relation
Ex 7.25: A1 ~ A2 — det(Al) = det(Ag)
* [Trace]: Trace of matrix := product of diagonal elements

Def 7.26 [Determinant & trace of linear operator]:
det(T) == det ([T ) and Tr(T) == Tr ([T]p)
for any T': V' — V and does not depend on choice of basis B

Def 7.27 [Characteristic polynomial]: For A € M, (F):
pa(z) =det(zl, — A) = 2" + b, 12" L+ +byx + by
For T:V =V, pr(z) = pr, ()

Ex 7.28: A1 ~ Ay = pa,(x) = pa,(x)
thus pr(z) does not depend on choice of basis
(bn—l =

(bo =

Ex 7.29: Tr(A4) = —b,—1

det(A) = (—1)" b

coefficient of 2™~ 1)
coefficient, of )

Eigenvalues & Eigenvectors

Def 8.1 [Basic definitions]: T: V — V with T'(v) =
v is an eigenvector corresponding to eigenvalue A

Av:

Thm 8.3 [Equiv. eigenvalue & eigenvector def.]:

A is eigenvalue of T' corresponding to eigenvector v
<= ) is eigenvalue of [T| ; corresponding to eigenvector [v] 5
= My —-T:V = V:zw— Az —T(x) is not isomorphism
<= A, = [T] is not invertible
<= \is aroot of pr(z) (=p), (7))

Ex 8.4 [Determinant]: If pT(x) =(x—X) -

HA

Def 8.5 [Eigenspace of an eigenvalue]: For any
eigenvalue \: V) (A4) :=Ker(Al, — A) ={v eV |T(v) = v}

(x — A\p)

where \; € F then det(T

Def 8.6 [Geometric & algebraic multiplicity of A]:
Geometric multiplicity: dim V) 1<dimV, <n
Algebraic mult.: num. of repeated factors (x — A) in pr(x)
For any A, (geometric mult. of \) < (algebraic mult. of \)

Ex 8.7 [Eigenspaces of T' and [T|; are isomorphic]:
fi Ker(T — My) = Null([T| 5 — AL,): w+— [w]g is an
isomorphism (.. dim V\(T') = dim V([T 5))

Rem 8.8 [Bases of 7" and [T;]:
{u1,...,us} is a basis for Vy(T)

< [wilg,...,[us]p is a basis for VA([T]g)
{X1,..., X} is a basis for Vy([T]p)

<— {BXy,...,BX,} is a basis for V)\(T)

Ex 8.9 [Eigenspaces of similar matrices]:
P~1AP =C = Vi(A) = PV,y(C) == {PX | X € (O}
(. dim V) (A) = dim V5 (C))

Ex 8.11 [Finding eigenspaces of a matrix]:

Find p4(x) by diagonalizing (xI3 — A) and read off the
eigenvalues, then for each \; compute rref(A — \;I,) to find
its null space = V), (4)

Ex 8.12 [Finding eigenspaces of a linear operator]:
Using a basis B (preferably the standard basis), find the
matrix [T, then use Ex 8.11 to compute Vj,([T],) and
Rem 8.8 to obtain V), (T)

Thm 8.14 [Sum of eigenspaces]:
k

Ak Y V(T
=1

fN)v

For any eigenvalues {\q, ... ) is a direct sum

Tut 8.4a: Av =X v = f(A)v= (Vf(x) € Flz])

T-invariant & T-cyclic Subspaces

Def 8.17 [T-invariant subspace]: For T: V — V:
Subspace W (of V) is T-invariant < T(W) C W

then T|W: W — W: w — T'(w) is the restriction of T on W
Ex 8.18: V) (T') and Span{<eigenvector>} are T-invariant
Ex 8.19: Wy, Wy are T-invar. = W7 + W5 is T-invar.
Ex 8.23: Ty 0Ty, =Ty 0Ty < Kerl,, ImT; are Ti-invar.
Tut 7.6: Ty 0Ty =Th 0T} <= any e.sp. of Ty is Ti-invar.

Ex 8.24: W is T-invar. <= T(Bw) C W (for basis By)

Za z* then:

Z a;T" is a lin. op.

Def 8.15 [Polynomial f(T)]: For f
T:V = Vislin. op. = f(T
Ae M, (F) = ZalAleM F)

16 [Operations on f(T)]: For f(x),g(x)
=f([T)p) . [(T) =0y = f(T
( ) =

f(T) o g(T)
i.e. polynomial multiplication = composition)

GF[LU]
Ip) = 0In)

f
(i

(3) f(M)g(T) = (T)f(T) (i.e. commutativity)
(4) f(P7YAP) = P71f(A)P (for any invertible matrix P)
(5) f(STITS) = S~1f(T)S  (for any isomorphism S)
Ex 8.25 [T-cyclic subspace]: For 0 £ w; € V
(1) W = Span{T*(w;) | s > 0} is T-invariant
(2) If s > 0 is the smallest integer such that
T%(w) € Span{wy, T(w1),..., T (w;)} then:

T (wq)} is basis of W

s—1

Hansand {wl, (w1),.
Z% 2

(can be proved usmg cofactor expansion or induction)

and T (w) (w1) = pryw(z) = —cia’) + 2

Thm 8.26: pr(x) = q(x)prw(x) for some g(x) € F[x]

Ex 8.27 [Determinant of upper triangular matrix

blocks]: det G G det(Cy) det(C3)
0 O3
Ex 8.28: W is T-invariant <= B =(By, B2)
_ (A A

for square matrices A1, As
(i-e. the bottom-left cells are all zero (and A; = [T|W]p )
Additionally, if A3 = 0 then Span(Bs) is T-invariant too

¢ Ex 8.29 [Upper triangular form of a transformation]:
k

If pr(z) = H(m — ;)™ (i.e. is fully factorizable) then there
i=1
exists a basis B such that [T is upper triangular
k
If pa(z) = H(x —X;)™ (i.e. is fully factorizable) then there

i=1
exists an invertible P such that P~'AP is upper triangular

¢ Ex 8.30 [Characteristic polynomial of direct sum]:
Given T: V — V and T-invariant subspaces W; such that

V =@, Wi, then pr(z) = [[, pryw, ()

¢ Ex 8.31 [Representation matrix of direct sum]:
V =@, W; (for T-invariant subspaces W;) <=
[T) 5 = diag[Ay, ..., A;] (where size of A; = dim W;)
(when this is true, A; = [T|W;] . for some basis B; of W;)

e Thm 8.31 [Cayley-Hamilton theorem]:
pT(T) = OIV pA(A) = O]n

Minimal Polynomials

e Def 9.1 [Minimal polynomial]: my(x) is the is the
lowest-degree monic polynomial such that my(T) = 01y

e Rem 9.2: my(z) exists and mr(x) | pr(x)

f(T)=0ly < mr(z) | f(z)
f(A) =01, <= ma(z)| f(z)

e Thm 9.3a:

e Thm 9.3b [Uniqueness]: Minimal polynomial is unique

e Rem 9.19 [Same zero set as pr(z)]:
{a € Flmr(a) =0} = {a € F|pr(a) = 0}

e Ex 9.4 [Finding m4(z)]: Simply check all factors of pa(z)
which have at least degree 1 of each eigenvalue

e Ex 9.5 [Sim. matrices]: A; ~ Ay = my, () = ma,(x)
e Ex 9.6 [Direct sum]: A = diag[A4,...,A4,]
= ma(z) =lem{mau,(z),...,mq,(z)}
Equivalently, V = @, W; and W; are T-invariant
= mr(x) = lem{mqw,(z)}
. A1 0 --- 0 O
Jordan Canonical Form (¢ » 1 ... ¢ o
e Def 9.8 [Jordan block]: J (\) == | :
Js(N\) € My(F) 0 0 0 Al
(1) my,(N) =ps.(A) = (x = N\)° 0 0 0 0 A

(2) Va(Js(3) = Span {(1,0,---,0)'}
(3) geometric mult. of A = 1, algebraic mult. of A = s

e Ex 9.9 [Jordan canonical form with eigenvalue Al:
If A = diag;[Js,(\)] then:
(1) ma(x) = lem;{ms, ()} (= max Jordan block size)
(2) VA(A) = span of columns corresponding to the first
element in each Jordan block (these columns form a basis)
(3) geom. mult. of A = dim V) (A4) = num. of Jordan blocks

e Def 9.11 [Jordan canonical form]:
J = diag[A(A1), ..., A(\k)] where A();) are from Ex 9.9

is a Jordan canonical form
k

HPA /\1 H(

=1
z) = HmA(Al)(I)
=1

k
=[J@-
i=1

e Thm 9.14 [Linear operator]: If pp(z) is fully
factorizable, i.e. pr(xz) =[],(x — A;)™ and
mr(x) = [[;(@ — A;)™, then there exists a basis B such
that J := [T] is in Jordan canonical form, and J is unique
up to re-ordering of Jordan blocks

)\i>(5ize of A(X:))

A (max Jordan block in A(X;))
i)

e Thm 9.15 [Matrix]: If p4(z) is fully factorizable, i.e.
pa(z) =1[;(x — )™ and ma(x) = [[;(x — \)™, then
there exists an invertible P such that J := P~1AP is in

Jordan canonical form, and J is unique up to re-ordering of
Jordan blocks

e Thm 9.16 [T and [T]5]:
For any basis B of T" and Jordan canonical form J:
P [T]BP =J <— [T}(EP) =J

e Thm 9.18 [Factorizability in F]:
A (or T') has a Jordan canonical form
<= pa(x) (or pr(x)) is fully factorizable in F

e Thm 9.20: A; ~ Ay <= A; and A, have the same
Jordan canonical form (after reordering of Jordan blocks)

e Ex 10.1 [Solving differential equations|: y; = y;(x)
Solve simult. equs. y; = a;1y1 + ai2y2 + a;3ys for i =1,2,3:

Y1 yll aj; a2 Qi3
Yi=|9p]|,Y=yl| A= an ax a3

Ys yé as; azz ass
Find a Jordan canon. form J := P~'AP, and Z := P~'Y
Then PZ' = (PZ) =Y' =AY = APZ ie. Z' =JZ

...which can be solved by substitution since J is triangular

Diagonalizability

e Def 9.21 [Basic definition]:
T is diagonalizable <= 3 basis B s.t. [T] is diagonal
A is diagonalizable <= 3 invertible matrix P s.t. P~1AP

is diagonal

In particular, if B = (v1,...,v,) and P = (p1, ...
T'(v;) = A\v; (where [T]5 = diag[A1, ..., A\n])
Ap; = \ip; (where P71AP = diag[\, ..., \n])
i.e. B is an eigenbasis for T’
Given eigenvectors and corresponding eigenvalues,
T and A can be re-constructed

,Pn) then:

e Thm 9.23 [Equiv. diagonalizable def.]:
T is diagonalizable over F'
<= [T]p, is diagonalizable over F for some basis B’
<= [T]p is diagonalizable over F for all bases B’
<= a basis B can be formed from (some) eigenvectors of T'
<= there exists n linearly independent eigenvectors of T’
<= for some (and hence every) basis B, a basis P for

[T] 5, can be formed from (some) eigenvectors of [T] 5,

<= for some (and hence every) basis B’, there exists n
linearly independent eigenvectors of [T,

< If \p,,..., Am, are the only distinct eigenvalues of T,
and B; is a basis of V), (T'), and B = (B4, ..., By),
then [T], = diag [)\mII‘Bl‘, .. ’7)\mkI|Bk|:|

In above def., B = (v1,...,v,) <= P = ([vi]g -, [Unlp)

e Thm 9.24 [Diagonalizable def. for mz(z) & m(z)]:
The equivalences applies to both T" and A:
T is diagonalizable over F'

<= mr(z) is a product of distinct linear polynomials in F

(i.e. my(x) = [[;(z — X;) where all \; are distinct)
<= my(z) is fully factorizable in F with no repeated roots
< If pr(z) =[[,(z — A\;)™ where all \; are distinct,

then dim Vy, = n; (i.e. geom. mult = alg. mult.)

¢ Rem 9.25 [Finding P to diagonalize AJ:
Find pa(z) = [I,(z — A)"™,
ensure m 4 (z) has no repeated roots (i.e. is diagonalizable),
then take any basis B; of eigenspace Vy,(A), then
P = (By,...By) € M, (F) will make P~*AP diagonalizable

e Tut 7.7 [Multiplication with upp. triangular
vanishing diagonal matrices]: For r,s > 0:
A = (a;;) € M, (F) with a;; =0 (Vj —i <r) and
= C=AB = (¢j) hasc;; =0 (Vj—i<r+s+1)

In particular, A" =0

e Ex 9.29a [Nilpotence]:
T is nilpotent <= Im € Z* such that T™ = 0l

e Ex 9.29b [Equiv. nilpotence def.]: T has dimension n:
T is nilpotent
<= every eigenvalue of T is zero
<~ pp(z) =2a"
<= myp(z) = 2° for some s € Z*

e Ex 9.29c [Semi-simplicity & nilpotence]:

Semi-simple = diagonalizable

If T has a Jordan canonical form, then there exists unique

semi-simple T and nilpotent T,, such that T =T + T,

This T and T,, satisfy:

(1) TsoT, =T, 0T,

(2) There are polynomials f(z) and g(x) such that

T, = (T) and T, = g(T)

(3) For any linear operator S, T oS =So0T —
TsoS=SoT,and T, 0 S =S0T,

e Tut 8.4b: A is diagonalizable = f(A) is diagonalizable

Bilinear Forms

¢ Def 10.2a [Basic definition]:
H:V xV — F is a bilinear form
— {H(awl + aswa,y) = a1 H(z1,y) + azH (v2,y)
H(z,biy1 + boya) = b1 H(z,y1) + baH (z,y2)
(Vm,xl,xg,y,yl,yg S V, Val,ag,bl,bg S F)

e Def 10.2b [Symmetry]:

H is symmetric <= H(z,y) = H(y,x) (Vz,y € V)

e Ex 10.3a [Bilin. form H,4 associated with matrix A]:
For a basis B = (v1,...,v,) and matrix A = (aij) € M, (F):

Z(E Vi, Zijj — Zza” TiyY;j

=1 j=1

Hp: VXV — F:

X1 Y1
Y= 11
Yn

...is a bilinear form (= X*AY where X =

Tn

¢ Ex 10.3b [Representation matrix|:
Given a basis B = (v1,...,0n), Hy4 is the bilinear form
associated with A, and this association is bijective

e Ex 10.3c [Symmetry of Hy|

H, is symmetric <= A is symmetric (i.e. A® = A)

e Def 10.5 [Non-degenerate]: H is non-degenerate <=

(H(z,y0) =0 (Vz € V) = yo=0)
H 4 is non-degenerate <= A is invertible (for one/any basis)

Inner Products

e Def 10.10a [Inner product (, )]:
H:V xV — Ris a real inner product if:
(1) H is a bilinear form
(2) H is symmetric
B)z#0 = (z,x2) >0
H:V xV — C is a complex inner product if:
(1) H is linear about x and conjugate linear about y, i.e.:

(G121 + agws, y) = a1 (21, 9) + as (22,9)
(@, bry1 + bay2) = by (x,y1) + b2 (2, y2)

(Vm7x1;m27y7y17y2 S Mva17a27b1,b2 S (C)

(2) H is conjugate symmetric, i.e. (y,z) = (z,y)
B)x#0 = (x,z) >0

Def 10.10b [Norm]: ||z|| = /{z,2z) >0
|z]| =0 <= z =0y

Def 10.10c [Orthogonal]: z L y < (z,y) =0

Ex 10.11 [Non-degeneracy of inner product]:
(uo,y) =0 (Vy € V) = g =0y
(Z,v9) =0 Vz € V) = vp =0y

Def 10.12 [Orthonormal basis]: B =
orthonormal basis (relative to (,)) if:

(1) vi Lv; (Vi # j)

(2) fJosll = 1 (¥i)

Ex 10.13a [Standard inner product]:
H:VxV->R:(X,Y)— XY  (real version)
H:VxV—=C:(X,Y)~ X'Y (complex version)
(X = element-wise complex conjugate of X)

(v1,...,vy) is an

Ex 10.13b [Standard basis is orthonormal]:
Any permutation of the standard basis is an orthonormal
basis (relative to the standard inner product)

Ex 10.13c [Inner product subspace]:
If W is subsp. of V and (V, H) is inner product space then:
(W, H|W) is an inner product space

Ex 10.15 [Gram-Schmidt process]:
iy D
Tl

V1 = Uy Vg = U —

Adjunction

with an inner product space F = R or C

e Def 10.16 [Adjoint matrix]: A* := (Z)t = (At)

¢ Ex 10.17 [Standard inner product]:
(AX)Y)=(X,A*Y) (VAe M, (F),VX,Y €V)

e Thm 10.18 [Adjoint linear operator T*]:
(1) Given T': V — V, there exists unique 7%: V — V s.t.:
(T(u),v) = (u, T*(v)) Vu,veV)
(2) Given any orthonormal basis B:  [T™*]5 = ([T]5)"

e Ex 10.19 [Adjoint of adjoint]: (T*)" =T
AT*(u),v) = (u, T(v)) (Vu,v€V)

e Ex 10.20 [Identities of adjunction]:
(1) T=aly = T"=aly (VO& S (C)
(2) (aTh + axTe)" = a1y + @ Ty
(3) (Ty o To)" = T o Ty

e Def 10.21 [Unitary and self-adjoint linear operators]:
1) T: R — Ris orthogonal <= TT* = Iy (i.e. T*T = Iy)
2) T: C — C is unitary <= TT* = Iy (i.e. T*T = Iy/)
3) T: R — R is symmetric <= T* =T

4) T: C — C is self-adjoint (or Hermitian) <= T* =T
5) T is normal <— TT* =T*T

Similar defs. exist for A € M,,(F) replacing T: F — F

. T is unitary or self-adjoint = T is normal

¢ Ex 10.22 [Linear operators & rep. matrices|:
For any basis B of T
T is unitary <= [T is unitary
T is self-adjoint <= [T is self-adjoint
T is normal <= [Ty is normal
Similar equivalences exist for orthogonal or symmetric T

" [T is unitary (or self-adj. or normal)
= [T]p, is unitary (or self-adj. or normal) (VB')

e Thm 10.23/10.24 [Equiv. orthogonal/unitary
matrix def.]: F' =R (for orthogonal) or C (for unitary)
For any matrix P € M, (F), using standard inner product:

P is orthogonal /unitary (i.e. PP* = 1I,,)

< P = (p1,...,pn) forms an orthonormal basis for F'
= VX,YeF': |PX-PY|=|X-Y|
<= VX eF!: |PX|=|X|

for one (and hence every) orthonormal basis B of F,
B’ := BP is an orthonormal basis of F

e Ex 10.25 [Eigenvalues of unitary matrices]:
If P € M, (C) is unitary then |[A| = 1 for all eigenvalues A
(. |det(P)] =1)
If P € M,(R) is orthogonal then |A| =1 for all (possibly
complex) eigenvalues A, and det(P) = +1

e Ex 10.26 [Eigenvalues of self-adjoint matrices]:
(1) A € M, (C) is self-adjoint = pa(z) has all real roots
(2) T: C — C is self-adjoint = pr(z) has all real roots
(3) T (or A) is self-adjoint = for any eigenvectors vy, vy
corresponding to distinct eigenvalues, v L vy

e Def 10.27a [Positive/negative definite linear ops.]:
T is positive definite <= T is self-adjoint and
(T(v),v) >0 (VO #veV)
T is negative definite <= T is self-adjoint and
(T(v),v) <0 (V0O#veV)
. T is negative definite <= —T is positive definite

e Def 10.27b [Positive/negative definite matrices]:
A is positive definite <= A is self-adjoint and
(AX)'X = X'A'X >0 (YO # X € F7)
T is negative definite <= T is self-adjoint and
(AX)'X = X'A'X <0 (YO # X € F7)
*. A is negative definite <= —A is positive definite

e Rem 10.28a [Leading principal minors]:

If A e M,(R) is symmetric then:
all leading principal minors of A
have positive determinants
(leading principle minors = upper-left square sub-matrices)

A is positive definite <=

¢ Rem 10.28b [Equiv. positive definite def.]:
If T is self-adjoint (on an inner product space over R or C)
with orthonormal basis B, and A = [T 5:
T is positive definite
<= A is positive definite
<= every eigenvalue of T is positive
<= every eigenvalue of A is positive
<= A = C*C for some invertible matrix C' € M, (C)

e Ex10.30 H: C!' xCI - C: (X,Y) —
product <= A is positive definite

(AX)YY is an inner

e Tut 10.6a [Normal op. properties]: If T is normal then:
(W) T = T*()[  (YveV)
(2) T = aTy is normal  (Va € C)
(3) T(v) = v = T*(v)=Xv
(4) vy, v are eig.vectors of distinct eigenvalues = v L vy

e Tut 10.6b [Schur’s theorem)]:
(1) T*(w) = Aw = (Span {w})" is T-invariant
(Thm) 3 orthonormal basis B s.t. [T], is upper triangular

Principal Axis Theorem

e Def 10.8 [Congruence]: Matrices A, B € M,,(F) are
congruent < B = P'AP for some P € M,(F)

Congruence is an equivalence relation

Representation matrix of bilinear form is congruent under
change of basis: If X = PY then: H(PY;, PYs) =
H(X1,Xs) = XtAX, = (PY;) A(PYs) = Y{(P'AP)Y,

e Thm 10.31 [Principal axis theorem]:
(1) T (on real inner prod. space) is symmetric (= self-adj.)
<= Jorthonormal basis B such that [T|; € M, (R) is diag.
(2) A € M, (R) is symmetric (= self-adj.) <= 3 orthogonal
matrix P such that P~1AP(= P*AP) € M, (R) is diagonal
(3) T (on complex inner product space) is normal <=
3 orthonormal basis B such that [T] is diagonal
(4) A € M,(C) is normal <= 3 unitary matrix U such
that U1 AU (= U*AU) € M,(C) is diagonal

e Ex 10.32 [Orthogonal complement]:
Let W be a subspace of V, and By be an orthonormal
basis of W, and W+ = {z € V | (z,w) = 0,Yw € W}
(1) By can be extd. to an orthonormal basis B = (Bw, B2)
of V' (just extend then orthonormalize via Gram-Schmidt
process), and any such By is an orthonormal basis of wt
2 V=WwWaeWwt

Quadratic Forms

e Def 10.33a [Quadratic forms]: K: V — F is a quadratic
form <= 3 symmetric bilin. form H s.t. K(z) = H(z, z)
When V = F?, all quadratic forms are of the form

1 n o n
E E Qi T;T 5

i=1 j=1

K:F' > F: =X X'AX =

Tn

for some symmetric A

e Def 10.33b: Every quadratic form on F" is a
homogeneous polynomial of degree 2, and vice-versa
(choose a;; = aj; = %(coef. of x;x;) to make A symmetric)

e Thm 10.34 [Quadratic form of principal axis thm.]|:

:g g AijTiZy,

i=1 j=1

n
i=1

Y1 T
= P_1

Yn Ln
A1,..., A € R are the eigenvalues of the symmetric matrix
A= (aij) € MH(R>

This expression is unique up to relabelling of \;y;

For any quadratic form f (z1,...,z,)

3 orthogonal P € M,,(R) s.t. f(x1,...,

(“standard form”) where and

e Rem 10.35 [Finding P to diagonalize a symmetric
(real) matrix A]: Get all eigenvalues & eigenspaces of A,
then get an orthonormal basis for each eigenspace using
Gram-Schmidt process, then concatenate the bases for form
P (since eigenspaces of distinct eigenvalues are orthogonal
for symmetric matrices) and P*AP = diag[<eigenvalues>]

e Tut 10.4a [Cauchy-Schwarz ineq.]: |(z,y)| < ||z ||yl
e Tut 10.4b [Triangle ineq.]: ||z +y| < ||=]| + ||v]|



